Isolation and connectivity in random geometric graphs with self-similar intensity measures
نویسنده
چکیده
Random geometric graphs consist of randomly distributed nodes (points), with pairs of nodes within a given mutual distance linked. In the usual model the distribution of nodes is uniform on a square, and in the limit of infinitely many nodes and shrinking linking range, the number of isolated nodes is Poisson distributed, and the probability of no isolated nodes is equal to the probability the whole graph is connected. Here we examine these properties for several self-similar node distributions, including smooth and fractal, uniform and nonuniform, and finitely ramified or otherwise. We show that nonuniformity can break the Poisson distribution property, but it strengthens the link between isolation and connectivity. It also stretches out the connectivity transition. Finite ramification is another mechanism for lack of connectivity. The same considerations apply to fractal distributions as smooth, with some technical differences in evaluation of the integrals and analytical arguments.
منابع مشابه
Some topological indices of graphs and some inequalities
Let G be a graph. In this paper, we study the eccentric connectivity index, the new version of the second Zagreb index and the forth geometric–arithmetic index.. The basic properties of these novel graph descriptors and some inequalities for them are established.
متن کاملIncidence cuts and connectivity in fuzzy incidence graphs
Fuzzy incidence graphs can be used as models for nondeterministic interconnection networks having extra node-edgerelationships. For example, ramps in a highway system may be modeled as a fuzzy incidence graph so that unexpectedflow between cities and highways can be effectively studied and controlled. Like node and edge connectivity in graphs,node connectivity and arc connectivity in fuzzy inci...
متن کاملThe distant-2 chromatic number of random proximity and random geometric graphs
We are interested in finding bounds for the distant-2 chromatic number of geometric graphs drawn from different models. We consider two undirected models of random graphs: random geometric graphs and random proximity graphs for which sharp connectivity thresholds have been shown. We are interested in a.a.s. connected graphs close just above the connectivity threshold. For such subfamilies of ra...
متن کاملA curious gap in one-dimensional geometric random graphs between connectivity and the absence of isolated node
One-dimensional geometric random graphs are constructed by distributing n nodes uniformly and independently on a unit interval and then assigning an undirected edge between any two nodes that have a distance at most rn. These graphs have received much interest and been used in various applications including wireless networks. A threshold of rn for connectivity is known as r∗ n = lnn n in the li...
متن کاملk-connectivity of Random Graphs and Random Geometric Graphs in Node Fault Model
k-connectivity of random graphs is a fundamental property indicating reliability of multi-hop wireless sensor networks (WSN). WSNs comprising of sensor nodes with limited power resources are modeled by random graphs with unreliable nodes, which is known as the node fault model. In this paper, we investigate k-connectivity of random graphs in the node fault model by evaluating the network breakd...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- CoRR
دوره abs/1710.11043 شماره
صفحات -
تاریخ انتشار 2017